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SCATTERING THEORY FOR THE ACOUSTIC WAVE EQUATION
IN AN ARBITRARY EXTERIOR DOMAIN

INTRODUCTION

The following is a preliminary report on some recent theoretical investigations per-
taining to scattering theory. Further study and the physical implications of these results
will be discussed elsewhere. The scheme for direct scattering theory is outlined first, and
an important topic is indicated for the inverse problem.

If u(x) is the difference between the instantaneous pressure and the equilibrium
pressure, p(x) is the equilibrium density of the medium, c(x) is the local speed of sound,

€ is an open connected subset of R" with bounded complement, D; denotes 3/dt, and
A= c2(x)p(x)v -1/p(x)V, then the acoustic wave equation is

D= - Au, (R, x€Q, (1)
with the initial conditions
u(0,x) = f(x) and D,u(0,x) = g(x), x€E8 (2)

and the generalized Neumann boundary condition
[ 2@p H(x)Aue(x) dx = [ p7L(x)Tu(x) - Vo(x) dx, x € Q and 0,70 ELA(Q). (3)

If the domain §2 considered here has a smooth boundary 92, say Cz, then boundary con-
dition (8) is equivalent to the classical Neumann boundary condition
vevu(tx)=0, x€09%, (4)

with » denoting the outward unit normal of 0§2 at «x.

This acoustic wave propagation problem is considered here as a perturbed system in
contrast to the following, named “the unperturbed system™:

thv(t,x) =-Aqyu(t,x)
=-v%u(tx), =x€Q, (5)

Note: Manuscript submitted June 14, 1976.
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with the same initial and boundary conditions (2) and (3) of the perturbed problem.
We impose here the general assumptions that apply throughout this report:”

Assumption 1. The exterior domain £2 has the finite tiling property: there exist an open

set O in R", compact sets K;, ..., K) in R", and nonzero vectors x(1), ..., x(®V) such that
Q2 C 0, (6)
ONQ CUK;, 1<j<N, (7)

and
fx=xy+tx): 0<t<1}CQ, x4€ QNK;. (8)

This property of an exterior domain is due to Wilcox [1]. Here we would not ex-
clude the case 2 = R",

Assumption 2. The density function p(x) is Cz(.Q) and real valued, and for some constant
J>1

J=px)=J, xeEQ. (9)
Also,
p(x) > 1 when lx|—> oo (10)
and
D* p(lx) behaves like o(lx 1) when (x|~ oo (11)
foralla, 1< lal=o0y +...+q, <2.

Assumption 3. The local speed c(x) is Cl(.Q) and real valued, and for some constant
K>1

K=>cx)=K1l, x€Q. (12)
Also,
¢(x) > 1 when lx|— oo (13)
and
V In c(x) = o(ix1) when lx|—> oo, 14)

Assumption 4. The “Stummel condition” is satisfied by g(x) = c'z(x)p'l(x); that is, for
some a > 0,
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sup [ 1g(y) 12 la=y 77470 dy < + o0, if n > 4, (15)

where the integration variable y runs in the disk {lx-y|< 1}N£ and the supremum is
taken on x € 2.

The differential operator A defined by (5) on £2, with assumption 1, subject to the
generalized Neumann boundary condition, is a self-adjoint, nonnegative operator in the
Hilbert space L4(£2). Its spectrum is the closed interval [0, *°) and is absolutely (spectral)
continuous and without eigenvalues. These interesting results are proved by Wilcox [1].
With these four general assumptions we will show that the operator A defined by (1)
subject to the generalized Neumann boundary condition is also a self-adjoint, nonnegative
operator in the same Hilbert space L4(£2) and that its spectrum contains the interval
(0, 0), is contained in [0, <), and is absolutely continuous. The only uncertainty occurs
when the origin is to be an eigenvalue. These results are discussed in the next section.

The scattering operator S is unitary if the Mgller wave operators W, are orthogonal,
Wiw, =1, (16)

and are complete,
W, Wi =1 - E(0+), (17)

where E()) is the resolution of the identity for A. Therefore, in the third section, we will
discuss the existence of the Mgller wave operators W, and properties (16) and (17).

The inverse problem of the scattering theory is to construct ¢(x) and p(x) from the
“scattering amplitude.” The study of the one-dimensional plasma inverse problem by Szu,
Yang, Ahn, and Carroll [2] and the articles by Faddeev [3] and Newton [4] on the
three-dimensional inverse scattering problem for the Schr&dinger equation all center on
discussion of the integral equation

u(xfew) = €% +[ G-y osw)A"u(y w) dy (18)

for all y such that y*w > x*w for each unit vector w in R, where A’ = A - A, and
where G(x,k;w) is a certain class of Green functions of the reduced equation from the
unperturbed system:

(A + kR2)G(x,k) = 8(x). (19)

This particular problem is connected with the direct problem and is discussed in the
fourth section.

Other references relating to the results can be obtained through those cited in this
report.
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SOLUTIONS OF THE ACOUSTIC WAVE EQUATION WITH THE NEUMANN
BOUNDARY CONDITION AND ITS SPECTRAL THEORY

A solution of the mixed initial-boundary-value problem of Egs. (1) through (3) will
be constructed by using a famous spectral theorem. Then the absolute continuity of the
spectrum of A will be is studied. The resulting theory provides a preparation for
constructing the wave operator and scattering operator.

We recall here the initial-boundary-value problem:

D? =-Au,t>0,

= c2(x)p(x)V *1/p(x)Vu, x € Q, (20)
u(0, x) =f(x) and D,u(0,x)=g(x), x€; (21)

fc'z(x)p'l(x)Au(x)v(x) dx = fp'l(x)v u(x)*Vu(x) dx, x € Q and v,Yv € L2(R). (22)

The formulation of the problem will based on the following function spaces:

u €Ly () <»flu(x) 12 dx <o, x €8, in the Lebesque measure, (23)
u € H,(Q) ¢ Du€LyR), |al<m, (24)
u€ Lo(S2ic2p) @ (c2p)Y2u € Ly(Q), (25)
u € H,,(c2p) © (2p)1/2D% € Ly(R), lai<m, (26)
and
u €X; e pl2viu e L2(Q). (27)

These spaces are Hilbert spaces with respect to the following inner products respectively:

(uv) = f u(x)v(x) dx, x € Q, (28)
Q
(up), =2 (D%, D*), lal<m, (29)
w,wm =fc'2(x)p'1(x) u(x) v(ix) dx, x € £, (30)
W), =2, D%, D%, lal< m, (31)
1 ; .
[l =Zf5f97) Vu@)Piv(x) dr, x€Qand1<j<i<2. (32)
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It is clear from the characteristics (9) and (12) of p(x) and c(x) that L,(£2) = H,(82)
(which is equivalent to Lo(2; ¢2p) = Hy(82; ¢2p), in the view of their norms).

Suppose that the boundary 982 of § is sufficiently smooth, say C2. Then Green’s
theorem implies that

(Au,v) = -f [V . ;zlx—)v u(x)] v(x) dx

_ (L .
= p(x)Vu(x) Vv(x) dx

], . L
_f[v p(x)Vpu(x)} v(x) dS(x), x €92, (33)

where v is the unit outward normal of 0€2 at x. This means that
~<Au,v) + [u,v]; = ‘T(I;)-[V « Yu(x)] * v(x)dS(x), «x€I (34)

Therefore, for u € X,, u satisfies the classical Neumann boundary condition v * Vu(¢,x) =
0 if and only if v satisfies the relation (22), which in the new notation is

(Au,v) = [u,vl;, vE X NLy(2;c2p). (35)

Definition 1. A function u € X, is said to satisfy the generalized Neumann condition if
and only if (35) holds.

This definition does not require the assumption of the smoothness of the boundary
082 of . However it defines the classical Neumann condition if 0£2 is smooth.

Furthermore a definition is introduced for a closed subspace in X,:
u€H ¢ u€ X,y and satisfies (35). (36)

The construction of a solution of the initial-boundary-value problem is based on the
linear operator A in H, given by (20) with domain

D(A) = K. (37
Theorem 1. A is a self-adjoint operator on the Hilbert space Lz(ﬂ;czp). Moreover A = 0.
The verification of the assertions is based on the following result:
Lemma 1. Let J( be a Hilbert space and let L: H >3 be a linear operator densely de-
fined in 3. Assume that L C L*, the adjoint of L, L =2 0, and that the range R(I + L)
of I + L is . Then L is self-adjoint.
Proof of Lemma 1. L 2 0 indicates that the deficiency indices of the symmetric operator

L and of L™, an extension of L, are equal [5,p.268]. Condition R(I+L) = ¥ implies the
deficiency index is zero and hence L is self-adjoint.

5
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Proof of Theorem 1. Verify the conditions of lemma 1 for 3 = L,(£2;¢ 2p)and L = A.
The space CO(Q) of infinitely-many-times continuously dlfferentlable functlons with com-

pact support in £2 is a subset of D(A) = #; hence D(A) is dense in Lz(ﬂ,c p). Let u and
v be any two elements of D(A). Then (35) and (32) yield

Ay, v) = [u, v], f— Vu(x) = Vu(x) dx = {u, Av). (38)

Consequently D(A) C D(A™) and A™u = Au for all u € D(A); that is, A C A*.

The assertion A = 0, also one of the conditions to be checked, follows from the
result yielded by (35) and (32) that for all u € D(A)

Au,w = [u,uly = [1p712(x)Vu(x)? dx, = € Q. (39)

The only condition left to be verified, R(I+A) = Lo(82;c p), means that for each f
in Ly(82;¢ p) there exists an element u of D(A) such that

W, v) + Au,v) = {f, v} for all v in H,(Qic?p). (40)
This, together with (35), is equivalent to
w, v) + [u,v]; = v) for all v in H,(;¢2p). (41)

Sufficiently, if the equivalent inner product for Hl(Q;czp) that we use is

{u,v}= W, ) + [u,v]y, wv € H{(ic?p), (42)

we need to verify the existence of u such that
{u,v}= (v, v EH (%) (43)

However,
IF, W < ¢, P2, v)1/2 < const {f, FR2 {v, v}l/2

The Riesz representation theorem in the Hilbert space (H;(£2;¢ p) {., .} yields the
existence of an element u in H; (£2;¢ p) satisfying (43) and then (41). On the other hand
(41) 1mplles (40) for all v in co(SZ) Thus Au = f - u with the member on the right side

in Ly(S2,¢ p), hence Au is also in Lo (2, c2 ). Moreover, because the validity of (40) itself,
is implied when, ¢g(£2) is dense in Hq(£2,c“p), the combination of (40) and (41) ensures
that u satisfies the generalized Neumann condition (35). Thus R(I+A4) = #( is verified, and
the proof of theorem 1 is complete.

Therefore the Kato [5,p.331] second representation theorem ensures the following
corollary.
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Corollary 1. A has a nonnegative square root A2 whose domain D(Allz) = Hl(Q;cpllz)
has the inner product

{u,v}= 2. f ¢ (x)p 12 (x)D%(x)D%(x) dx, x € Q,lal <1. (44)

Furthermore A1/ satisfies the relation
{AY2y, A1y} = 0 (0" 2 ()Dju, p7 M 2Dju), 1<j<n. (45)

From the results in theorem 1 and corollary 1, the argument of Wilcox [1], with
slight adjustment, gives the following theorem.

Theorem 2. For each f in D(A) and g in D(A1/2) there exists a uniquely defined strict

solution u with finite energy of the initial-boundary-value problem (20), (21), and (35)
with t € R such that

u € C2[R, Ly(R,c%p)] NCH R, Hy(2,c0'*)] NC(R, ),
and u has the energy integral in the two equivalent forms

E(u, Q,t) = {Dau(t),Du(t)} + 22 {Djn(t), Dju(t)}, j=1,...,n,

= {Du(t),Dau(t)} + {AM2u(t), AM2u(t)). (46)
and has the constancy of energy

From the spectral theorem for A and the associated operator calculus, we have the
following theorem.

Theorem 3. For real-valued functions f in Lo(§2) and g in D(A'llz), define
h=f+iA"2 € Ly(Q). (48)
Then the solution in Lo(S2) defined by
u(t) = (cos tA12)f + (4112 5in tA112)g (49)
with bounded coefficient operators satisfies
U(t, x) = Rev(t, x), (50)

where v(t, x) is the complex-valued solution in Lo(§2) defined by

v(t,0) = e itATV2p (51)
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Because the operator A is nonnegative, its spectrum 0(A) is contained in the interval
[0, ). The nonexistence of the positive eigenvalue is ensured by the following theorem.

Theorem 4 (Mochizuki [6]. Assume assumptions 2 through 4. Then, u = 0 in § is the
only L, (£2) solution of the equation

V- Vu + Ae”2(x)p"l(x)u = 0, x€EQ. (52)

1
p(x)
Proof. It suffices to check the conditions imposed by Mochizuki. His first three condi-

tions are presented by assumptions 2 through 4 by setting a ajr(x) = \/jk p71(x), b;
0, and q(x) = Ac¢"2(x)p 1 (x). Particularly, if n < 8, the “Stummel condition”

sup [lg(y)12 dy <o, (¥ € Q: lxyl < 1,2 € Q) (53)

is a consequence of the boundedness and the smoothness of ¢(x) and p(x) on . His
fourth condition is given by his remark 1.2 and by (9), (11), and (14). As for the unique
continuation property in his last condition, the smoothness assumption on ¢(x) and p(x)
implies the Holder condition [7, p. 23], which gives the property (according to his remark
1.1, or also according to Ref. 8 or Ref. 9).

Subject to some adjustment, the employment of the standard principle of limiting
absorption yields the absolute continuity of the continuous spectrum of A. The detailed
proof will appear in a follow-up article. The precise statement is the following.

Theorem 5. The resolution E(s) of the identity for the operator A is absolutely continu-
ous on any closed interval in (0, ©°).

Remark 1. Whether A = 0 is an eigenvalue or belong to the continuous spectrum is not
yet clear,
DISCUSSION OF THE MQLLER WAVE OPERATORS

As indicated in the Introduction, all properties of A studied in the last section hold
for Ay. Moreover the spectrum of A, is [0,°) and is absolutely continuous. These are
results of Wilcox [1]. These results and those of the last section ensure the existence of
the unltary groups e “iLlot gapd e Tilt —o < t < oo associated with the self-adjoint operators
Lo = AY? and L = A2,

The strong limits

Wy = S—-lim eilte7iLot ¢ - +oo (54)

are called the M¢gller wave operators. This yields

lim|leLth-eLOth, ||=0, t->too, (55)

and
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h=W,hy. (56)
The following map is the scattering operator:

S:f.~>f, =8f.. (57)

It is required to be unitary on L4(£2), which is an easy consequence of the orthogonality
(16) and the completeness (17) of the M¢ller wave operators.

The existence of the strong limit (54) is proved by employing the vanishing, when
t = oo, of the local energy of the solution to the unperturbed system and employing
the decaying in rate -1 - & of [t| for the first second-order derivative of the solution to
the unperturbed system.

The coincidence of the M¢ller wave operator W, with the stationary wave operators
U, and the properties of the orthogonality and the completeness for U, guarantee the cor-
responding properties for W,. The proof of the coincidence and of these two properties for
U, is based on the expansion principle of the generalized eigenfunctions of A, which has
been employed by a dozen different authors, including Ikebe [10], Mochizuki [11,12], and
Wilcox [1]. The details will be given in the follow-up article. A portion of the article
involves the principle of limiting absorption, which is studied in the next section.

PRINCIPLE OF LIMITING ABSORPTION AND THE INVERSE PROBLEM

There is no doubt about the role played by the principle of limiting absorption in
the eigenfunction expansion, which is a keystone for scattering theory. However, in the
three-dimensional inverse scattering theory for the Schrodinger equation, both Faddeev
[3] and Newton [4] studied the “Volterra” integral equation, where the principle of
limiting absorption again played an essential role. We will apply the principle of limiting
absorption to the acoustic wave equation. This should bring some light to the study of
the inverse problem of the scattering theory for the acoustic wave in three dimensions,
which will extend Ref. 2.

In the investigation of recdvering the perturbed operator A' = A - A, the reduced
wave equation of acoustics without an obstacle,

Au(x, k) + R2u(x,k) =0, x,k € R3, (58)
is expected to have a set of solutions u(x, k; w) such that the function u(x, k; w)e™*"*
has an analytic continuation into an q}?per halfplane in the variable s = B~ + v at a fixed x
and kL = & - (R*7Y)v; and u(x, k; w)e™ ™ *- 1 decreases with large |s|. From an alternative
form of (58), namely,

Agu + R%u = Aju

Vp(x)

+ Yu, k, x €R3, 59
p(x) 59

= k2[1 - cA(x)p%(x)]u -
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we should study the integral equation

u(x, k;w) = e*°% + [G(x -y, kw4 u(y, k;w) dy (60)

with x, k in R3 and with a unit vector w, where the Green function G(x, k; w) is a
limiting value of the following function with Im s = 0:

G(x, 5 5) = (2m)3 [l M*sw) % [(m + s)? - p2 - 2] dm, (61)

with m € R3, w = q/lql, s = k-w + ilgl, and u2 = k -~ (k*w)2. As indicated by Faddeev,
the irregularities in the expression under the integral sign are proven by the equations

m2=u?andmw=0" (62)

and do not depend on s with Im s ¥ 0. This implies, through a singular Fourier integral,
that the function defined by (61) is an analytical function of s in the upper half plane
and that

IG(x, u; s) exp [Im s(xw)]| < const (1 + |x])™L. (63)

The existence of an analytical continuation of the Green function G(x, k; w) in the upper
halfplane in the variable s = k*w, which satisfies (63), is just the characteristic property
that defines this function uniquely.

On the other hand, A; in (59) is still a differential operator. We remark that

' oL Ve()
G(x - k’ w)vu(y: k’ w) p(y)

2 2
= G(x - y; ks w){Vu(t, ks )22 iy ks w)[v p(x) Vo)l ”

p(x) p(x) p(x)
=y '[G(x -y, k; wu(y, k; w)vp(y)]+{v G(x -y, k; w).vp(y)
Y o T () o T p(y)
- [Vzp(x) _ le(x)lz]G(x ik w)}u(y . .
p(x) p(x) ’ ’

Formally this relation and the divergence theorem of Gauss give another representation
of (60):

u(x, k; w) = etk"x +fG(x -y, ky w)Aqu(y, k; w) dy

Ve(y)

°0) u(y, k; w) dy, (65)

+[VyyGlapy, ks w)-

10
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where the multiplication operator A, is defined by

2 2
Ao = d2T1 - c2(v)o? [V p(y) _ 1Vp() ] ks w). 6
U [1-c?(yp“] + °0) o) u(y, k; w) (66)
Here the following condition is assumed:
tim [ G(w - y, ki whu(y, s w)y - T ds(y) = 0, Iyl =1 > e, (67)

with the surface integral over the sphere with radius r. However some u(y, k; w) is re-
quired to be bounded, and since G({w - y, k; w) has the asymptotic estimate (63), condi-
tion (11) in assumption 2 ensures (67). The representation (65) is not justified yet,
because the asymptotic estimate for V, G(y, k; w) at large |y| is not clear.

This brings in the issue concerning the asymptotic estimate of both G(y, k; w) and
V, G(y, k; w) given by (61) with the principle of limiting absorption employed.

In the rest of this section, we will follow the idea used in Ref. 13. First we recall a
well-known formula [11, 13]:

oo

f e"P[r ~ (a + ib)]™! dr = in(sign b)H(p sign b)e'(a* 0P, (68)

—00

where H(t) is the Heaviside function. From (61) we have for a multiple index «

DYG(x, w3 5) = (2m) 3w * f r2(J, +J.) dr, (69)

-0

and

Te+d= [l aw)]®w? + (sm-w)zl‘l/ze"’”""<{r + (sfi-w)
s o :
+[u2 + (shi- w)2]1/2} Ty {r + (sti-w) — [u?

ciie w212 ) as ). (70)

Without loss of generality we can assume fi*x = x,f;. By the Morse transformatlon [14]

we choose a local coordinate (n;,m9) @t (+1,0,0) such that fn; =% (1 - nl - n2) Then
the estimate for large |x| is

11
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J, +J_ = const % [u2 + (s% -w)2] V2 I* I [izr + sw)]®({r + (s% *w)

+ [+ (Fw)2 12T 4 e+ (sEew) - 2+ (K w)2]12) 1)
+ eMIEIL- Rr 4 sw)1%({r - (5% w) + [w? + (% -w)2] 12}
+{r - (%-w) - [0 + (% w)?]21 )] + q(ra), (71)
where g(x) is estimated for large |x| as
lg(x)} + 1V q(x)| < const |x|2. (72)

Because the denominators in (70) would not vanish when m-w+0 (by (62)), there is no
singularity in (71) when % ‘w+0. After substitution of (71) and (72) into (69) and then
integration by parts, we have the estimation

D%G(x, u; s) < const |x["2, if ¥ -w%0. (73)
Assume now that ¥ -w = 0. Then (71) becomes
J, +J_ = const 2m(rlxlw) ™t { 1% (i%rsw)® + eirlxl [i(sw - #)]1H(r + m)~1

+(r-m)1] +q@x), (if%-w=0). (74)

Let ¢(r) be a C” function with compact support such that ¢(r) has values between 0 and
1 and is equal to 1 at r = £ yu. Therefore (69) and (74) imply that

D%G(x, u; s) = (271)'3[ r2(J, + )1 - ¢()] dr E )

-0

+ (21r)'2(|x|u)'1 const (ei’|x|¢>+(r; %,s, w, a)

+etrlly (%, 5, w, a([r + ul™ + [r - p]17Y) dr(= 1)

+0(lx]"2), if%-w=0. (75)

where ¢, = r¢(r)[i(sw*%r)]1%. There is no singularity in the integral for I 1. Integration by
parts yields I, = O(|x|'2). Employment of (68) for Iy gives

I, = (27lxlu)t const [Y.(Ixl; &, s, w, @)

+ Y (=3 ®, s, w, )] * [sin (ulx DH(Ix])], (76)

12
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where f * g means the convolution of f and g and where the function Y (lxl; %, s, w, «)
is the Fourier transform of ¢4(ri%, s, w, ) in r. Since ¢4 is compactly supported in r,
Y5 is a smooth rapidly decaying function in jx|. Therefore

D&G(x, u; s) = Of(lxlmw)"1], for large |x| with % -w = 0), 77
for any order « of derivatives.

Then for either ¥ *w = 0 or X*w ¥ 0, we have
IDXG(x, p; s) exp {Im s(x-w)}| < const (1 + lux))L, 0< ol <oo, (78)

which is (63) when a = 0.

This estimate ensures the two integrals on the right side of (65) are well-defined
under the general assumptions for ¢(x) and p(x). Equation (65) will be further studied in
the follow-up article.
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